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Abstract

This research investigated the effects of adding a

second-order flux-difference-splitting (FDS) correction term

to an existing computer code that is based on a first-order

FDS algorithm. It was determined that the second-order

algorithm did improve the accuracy of the code for a source

flow analysis, but second-order behavior could not be

confirmed by the error convergence patterns. It was also

discovered that, when tested across an oblique shock wave, the

second-order correction terms had minimal influence on the

accuracy and shock capturing ability of the first-order

accurate FDS method.
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INVESTIGATION OF FLUX-DIFFERENCE-SPLITTING

NUMERICAL METHOD IN SUPERSONIC NOZZLES

I. Introduction

Purpose

The purpose of this research is to add a second-order

accuracy to a newly developed first-order accurate computer

code that predicts the inviscid, two-dimensional (2D) flow

properties within and around the nozzles of hypersonic

aerospace vehicles, such as the National Aerospace

Plane (NASP). The code, which was developed by Doty (1), is

based upon an innovative differencing technique, known as

Flux-Difference-Splitting (FDS). The flux-difference-

splitting numerical method was created by Enquist and

Osher (5:45-75). Doty's code uses a first-order accurate

upwind FDS method, operating on the steady, inviscid, planar

form of the Euler Equations to model the flow field.

Additionally, the fluid is modeled with a perfect gas

assumption. This thesis adds second-order correction terms to

the first-order accurate code and evaluates the results by

comparing them against the existing first-order accurate

solution and known exact solutions. The exact solutions used

for this comparison are supersonic source flow and shock wave



reflection.

Background

Over the last twenty years, computers have played an

increasing role in the design of aircraft. Until recently, an

aircraft design would become finalized, and then a scaled down

model of the finished design would be built and tested in a

wind tunnel. This approach proved to be very expensive, time

consuming, and inefficient. Additionally, it lacked the

flexibility needed to improve the design as contract or

performance requirements changed, or to allow optimization of

the design during the design phase. Now, with the advancement

of supercomputers, engineers have the capability to

mathematically model aid simulate flights of the current

unfinished design, making it possible to optimize the design

before it is finalized.

According to Barthelemy (2:6-9), the NASP will require

technology that is a quantum leap ahead of the technology that

is used in today's aircraft and spacecraft, and will expend

enormous amounts of government and contractor rt-ourcas. A

sketch of a typical NASP type vehicle can be seen in Figure 1.

This type of vehicle will be powered by a supersonic

combustion ramjet (SCRAMJET) and, theoretically, will be able

to cruise at speeds of up to Mach 25.

The computer code was written as a "user friendly" tool

that design engineers could utilize to predict flow parameters
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in a NASP type nozzle to enhance design optimization. These

predicted flow parameters are shock wave and slip stream

locations, pressures, temperatures, and velocities throughout

the plane of the nozzle.

Figure 2 shows the general configuration of a NASP type

nozzle. In Figure 2, region 1 is the combustor exit.

Region 2 is the external air flow that passes under the

engines. The exhaust flow, in region 3a, and the external air

flow, in region 3b, are separated by a contact surface that

originates from the engine cowl, as illustrated in the figure.
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Airframe
IntegratedNozzle

Figure 1. Typical hypersonic vehicle (3:4).
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Figure 2. Expanded view of nozzle and cowl section (3:5).
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II. Governing Equations and Coordinate Transformation

Governing Equations

According to Anderson et al. (1:235-236), for flows with

sufficiently high Reynolds numbers the viscous and heat

transfer effects are confined to a thin boundary layer near

the wall. For a large ducted supersonic flow, such as flow in

a NASP type nozzle, these effects can be neglected for

preliminary analysis and design. With these two assumptions

applied to the full Navier-Stokes equations, and neglecting

body forces, the governing equations for this 2D, steady,

compressible, inviscid, adiabatic fluid flow can be reduced to

the inviscid Euler Equations:

ax_ ai _ o (1)
x ay

where

Pu Pv
S PU2 + P PVU (2)

puv pv 2 + P
u(pe + P) v(pe + P)

These equations are derived from the conservation laws:

conservation of mass, conservation of momentum, and

conservation of energy.

6



Coordinate Transformation

Equation (1) applies to the physical domain and can be

transformed into the computational domain, where it is more

convenient to numerically solve. Figure 3 shows both the

physical and computational coordinate systems for the nozzle.

To accomplish this transformation, the following mapping is

applied:

= x I = 11(X, Y) (3)

Here, the axial coordinate, x, maps directly into the

computational domain, but the normal coordinate, y, is

transformed by a nonlinear function. To determine what these

functions are, the chain rule of multivariable calculus must

be applied:

a () _ - ( + _o _ ( a() T, X.2(4)
ax axa ax an ac chflx

a) ac a oa( "I ana _ (a() +' a() (5)
ay ay ac ay ar 8 C (5)1

From Eq (3), it can be seen that:

7



x = 0(6)

Combining Eqs (4), (5), and (6) gives the chain rule form that

is used to transform the governing equations from the physical

to the computational domain:

a () - () + ()
ax - (7)

a() - () (8)

Applying Eqs (7) and (8) to the original governing

equations, Eqs (1) and (2), gives the transformed governing

equations in the computational domain:

a(R) + ,I a( ) (P. ya(,) = 0 (9)

Equation (9) can be written in a more convenient form as

a(z) = _a(E) a(F) (10)

For further information on the governing equations or the

8



transformation of the equations, see Appendix G in

reference 3.
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Figure 3. Coordinate Transformation (3:150).
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III. FLUX-DIFFERENCE-SPLITTING

Riemann Problem

The Riemann problem is the heart of the FDS method. The

flowfield must be discretized before the Riemann problem is

applied. The first step in the process is to model the

general flow property, * in Figure 4a, which has an arbitrary

spatial distribution, as a series of nodes. Each node

represents a localized region of uniform flow. The Riemann

problem assumes that these localized uniform flow regions, at

j and j+1 in Figure 4a, extend to a distance half-way between

the two nodes, and a discontinuity is assumed to exist at the

midpoint, j+1/2.

Waves are generated by the discontinuity at j+1/2. These

waves can be seen in Figure 4b. Waves (1) and (3) can either

be shock waves, expansion waves, or a combination of one of

each type of wave depending on the local flow configuration.

Wave (2) is a contact surface. These three waves separate the

flow into four regions of uniform flow, with regions 6 and 0

having values equal to known values at nodes above and below

the Riemann location, respectively. Regions 2 and 4

correspond to unknown values at the Riemann location that must

be solved for.

Three different methods exist to solve the Riemann

problem (3:10-13). The first method is an exact solution to

the Riemann problem where an iteration is performed using the
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oblique shock wave relationships across shock waves, and

Prandtl-Meyer expansion relationships across expansion waves.

The second method approximates the shock wave as an isentropic

compression and again requires iteration using Prandtl-Meyer

relationships across both expansions and compressions. The

third method is a linearized approximate solution that treats

the local Riemann problem as isentropic. This method uses a

linearized form of the Prandtl-Meyer relationships to

analytically solve across both expansions and compressions.

Only the exact solution is used in this research.

Exact Solution to the Riemann Problem. The Riemann

problem is solved exactly for the properties in regions 2 and

4, as shown in Figure 4b, by using oblique shock and Prandtl-

Meyer expansion relationships. This is an iterative process

in which the parameters in regions 2 and 4 are calculated

separately, but there are two known conditions. First, the

pressure in region 4 must match that of region 2 since the

contact surface cannot support a normal pressure gradient.

The second known condition is that the flow angle in region 4

is equal to the flow angle in region 2 with the two angles

equal to that of the contact surface.

Shock Wave Relationships. For the example in

Figure 4, the pressure at j+l is greater than the pressure at

node j. Therefore, wave 1 is a shock wave, and must be solved

12



using the oblique shock wave relationships. The following

shock wave relationships are written with 0 corresponding to

known values upstream in Riemann region 0, and 2 corresponding

to values that must be solved for downstream in Riemann

region 2. In the oblique shock example shown in Figures 4 and

5, the pressure in region 2 is greater than the pressure in

region 0. The following oblique shock wave equations are

taken from Zucrow (9:359-360).

82  2 - 00 (11)

1M_ 1 12 tan(e) (12)
tan(8,) 2 M02 sin2 (e) - 1

P = e - 82 (13)

P, - 2y M2 sin 2 (C) - Y - 1 (14)
P0  y +1 y-+ I (

P 2  - tan(e) _ (y + 1)M2 sin2 (e) (15)

P0  tan(P) 2 + (y - 1)Mo sin2 (e)
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V2 - sin(E) [ 2 + Y-

V0  sin(P) (y + 1 l)M, sin2 (e) Y+ (

tan (e) 2 1 ( 2 y - (17

tan(P) +1 M2 sin2 () 2(17)

u2 = V2 cos (02) (18)

v2 = V2 sin() 2 ) (19)

Expansion Wave Relationships. For the example, we

are assuming isentropic expansion, and using Prandtl-Meyer

expansion relationships. In this analysis, the subscripts

correspond to the applicable Riemann region. See Figures 6

and 7 for a graphical representation of the example. The

following equations are used across an expansion fan:

84 = 04 06 (20)

b= [Y + 11/2 (1
4(21)
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6b arctan-FM M-1J - arctan -i (22)

4 -, b arctan[- 1M4 -1] - arctan M 1]i (23)

1 + (- . -(y -1
P42 (24)

T ~ f1 2
16 2 M4

P6_ P6~~A (y -) (25)

a4 -f (26)
P4

U4 = M4 a4 COS (0)4) (27)

V4 = M4 a4 sin (0)4) (28)

Remember, as stated above, in Riemann regions 2 and 4 the flow

angles and pressures must match:
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04 = 02 (29)

P4 =P 2  (30)

This is an iterative process, and the flow turning angles

may change from compression to expansion, expansion to

compression, or experience no turning. Therefore, the flow

turning angle should be checked after each iteration to

determine the analytical mode that will be used next. The

iteration process is as follows (3:166-167):

1. The initial conditions for regions 6 and 0 are known and

remain fixed.

2. The flow angle for wave (2) is guessed. (The average of

the flow angles between regions 6 and 0 is usually

sufficient as a first aliess).

3. Solve the shock wave problem for the pressure in region 2.

a. The flow deflection angle is calculated as the

change in the flow angle between regions 0 and 2 for the

shock from Eq (11).

b. For the assumed turning angle, the oblique shock wave

angle is iteratively calculated from Eq (12).

c. The static pressure in region 2 is then calculated

from Eq (14).

16



4. Solve the expansion wave problem from regions 6 to 4.

a. Using Eq (29) the flow angle in region 4 is

required to be the same as the flow angle in region 2.

b. The flow deflection angle is then calculated as the

change in the flow angle between regions 6 and 4 for the

expansion wave using Eq (20).

c. The Prandtl-Meyer angle is calculated for region 6

using Eq (22) and remains fixed.

d. The Prandtl-Meyer angle is calculated for region 4

using the first of Eqs (23).

e. The Mach number in region 4 is iteratively calculated

from the second of Eqs (23).

f. The static pressure in region 4 is calculated from

Eq (24).

5. Check for consistent solutions.

a. The static pressure in regions 4 and 2 must match

across the contact surface according to Eq (30).

b. If the pressures are equal (or within a specified

tolerance), the iteration is complete.

c. If the pressures are not equal, a new flow angle is

guessed and the iteration continues from step 3.

6. Calculate remaining properties from the shock and

expansion wave relations.

17



Flux Differencing

Before the fluxes can be differenced, they must be

computed. This is accomplished by using the primitive

variables that were calculated by the exact solution to the

Riemann problem. Recall that these primitive variables were

computed at the Riemann locations, which are positioned half-

way between the nodes, as shown in Figure 8. The Riemann

fluxes must be calculated for all four components of the E and

F vectors, in each of the four Riemann regions, and are

recombined as defined by Eqs (1) and (2), repeated here for

convenience:

_ af + -0 (1)
ax ay

where

pu 1 pv
E = PU P  = PVu
S pu2 + p PVU (2)PUV F PV + P

u(pe + P) v(pe + P)

As an example, the first E flux component, El, would be

computed at each Riemann location for all four Riemann

regions:

18



(E1)o = PoU0  (31)

(E1)2 = p2U2  (32)

(El) 4 = P4U4  (33)

(El) 6 
= 6U6 (34)

After the fluxes have been calculated at all the Riemann

locations on the vertical plane, see Figure 8, they must be

locally differenced across waves (1), (2), and (3).

Differencing El across wave (1) corresponds to differencing

the density/axial velocity product between regions 0 and 2.

This can be shown mathematically as:

(dEl) wave 1 = (El) 2 - (El) 0 
= P2U2 - PoUo (35)

Likewise, differencing El across waves (2) and (3):

(dEl) wave 2 = (El) 4 - (El) 2 = P4 U4 - P2 U2  (36)

19



(dEl) wave3 (El)6 - (El) 4 = P6 u 6 - P4U4 (37)

Summing the flux differences across all three waves gives the

total flux difference at the Riemann location, j+1/2:

(dE).1 1/2 = [ (dEl) wave 3 + (dEl) wave 2 + (dEl) wave 1 j112 (38)

The differences of the other three E components and the four

F components are computed in a similar fashion.

At this point, the FDS approach is still similar to the

finite-difference approach in that Eq (38) represents the

total difference between nodes j and j+1. This is where the

FDS method differs from the finite-difference method in that

for FDS the differences are split into positively and

negatively biased components.

Splitting the Flux Differences

Splitting the flux differences is a directional biasing

of the flux differences. As a result, only relevant

information is received at each downstream node, as

illustrated in Figure 9.

Splitting the flux differences is accomplished by

breaking up the flux differences, that were calculated at each

Riemann location, into positive and negative components. For

20



the El flux difference, splitting across each wave would give:

(dEl)wave = (dEl ) + (dE-) 1  (39)

(dEl) wave 2 = (dEl I + (dE I wave 2  (40)
wave 2wa(dE

(dEl) wave 3 = (dE1 ) wave 3 + (dE1-) wave 3 (41)

Here, the "+" superscript indicates that this quantity is the

portion of the flux difference that passes information in the

positive y direction. Inversely, the "-" superscript only

passes information in the negative y direction. As before,

the split flux differences can be added over all three waves

to get the total positive and negative flux differences at the

Riemann location for all E and F components.

1/2 ((E. (d ) (

(dEl);.1 /2  ( wdEl)wave1 +(dEl)wave 2 + (dEl)ave 3)j 1 2  (42)

(dEl)j+1 / 2 = ((dEl)wave1 + (dEl)wave 2 +(dEl)wave 3 )j 1 /2  (43)

Again, this procedure would be repeated for the other three E

and four F vector components.

21



Values are known at computational plane i, and the split

flux differences are used to pass information to the next

plane, i+l. See Figure 9 for a graphical representation. The

information is passed in the direction of characteristics and

streamlines in the computational domain. These characteristic

slopes are given by (dy/dx) in the physical domain, but in the

computational domain they are:

dC dx ax dx ay dx (4

II +- Tly d~

A2 = + TI [- 1Y(45)

A3 = + ' Ty r-13 (46)

where

[d] uv -a 2 VIM2 - 1 (47)S u2 -a2

22



iy- 1 dx U(48)

=y uv_+ a 2VM- 1 (49)
dX3 U 2 - a 2

Equations (47), (48), and (49) can be manipulated to give the

characteristic slopes in the physical domain in terms of flow

angle and Mach angle, see Doty (4):

[dE. = tan(f - a) (50)

[-] 2  = tan(e) (51)

~dx = tan (0 + a) (52)

Maximum Ste2 Size for Marching Algorithm

The step size, for this steady problem, corresponds to

the largest axial distance, from plane i to plane i+1, that

can be made while keeping the solution stable, and must be

determined at each computational plane. According to Anderson

et al. (1:76), the CFL condition requires that the analytic

domain of influence must lie within the numerical domain of

23



influence, as illustrated in Figure 10. Therefore, any step

size larger than this amount would cause instability. After

all the characteristic slopes and stream line locations have

been computed at the computational plane, i, a local step

size, AC, can be determined for each nodal location, j. The

local step size is equal to the minimum axial distance of the

intersection of the streamline from node j and either the

negatively biased characteristic at j+1 or the positively

biased characteristic from j-l. The magnitude of AC for the

computational plane, i, is equal to the minimum local AC on

that plane. Also, for this research, a Courant number

multiplier of 0.99 was used.
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Figure 4. Riemann problem for planar supersonic flow (3:14).
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Figure 5. Oblique shock wave geometry (3:178).
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Figure 6. Prandti-meyer expansion wave geometry (3:179).
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Figure 8. Flux differences and splitting (3:188).
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Figure 10. Step size determination (3:157).
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IV. First-Order Accurate Upwind Flux-Difference-Split

Numerical Alqorithm

First-Order Accurate Interior Point FDS Approximations

Recall that the governing equations for steady, inviscid,

adiabatic, planar flow in computational space are given by:

8(E) = _a(z) - ,Oa(F) (10)

These equations are operated on by a flux-difference-splitting

in the normal direction, and finite differencing in the axial

direction. The governing equations can be rewritten into

their approximate computational form, shown in Eq (53),

(3:190).

A 1 (Z) A.(E) Aj(F) (53)

Here, for computational convenience,

All = 1 (54)

Substituting Eq (54) into Eq (53), and rearranging gives:

29



A1 (Z) = -A(nxA (R) -AC Tly A, (F) (55)

The "i" subscript indicates a finite-difference operator in

the axial direction. In this case, a two-point, upwind,

first-order accurate, finite-difference operator is applied

between planes i and i+l. The "j" subscript, in Eq (55),

signifies that a FDS operator is applied in the normal

direction. Here, a two-point, upwind, first-order accurate,

FDS operator is applied in both the positive and negative y

directions at node j on plane i, resulting in a three point

stencil in the normal direction, as shown in Figure 11. In

Eq (55), the finite-difference operator is:

( +1 =j z  (56)

The flux-difference operators are:

Aj(E) = + dEi.1 1  (57)

and

A,(F) = [dr;. 1/2 + dF+ 1 /2j (58)

Note how only the positive biased information from the Riemann

30



location below j, at j-1/2, and the negative biased

information from the Riemann location above, at j+1/2, is used

to determine the new values at the next computational plane,

i+1. Substituting Eqs (56), (57), and (58) into Eq (55) and

rearranging gives:

i+1 NI- A&C iin, [dff;1 1 2  + dF+ 1 /2]
Nj I -A Tl [dP-3./ + ir;+/21(59)

Equation (59) represents the first-order differencing equation

in chain rule conservation form. The chain rule conservation

form uses metrics that are calculated at the nodes. The weak

conservation law form, which is another method for solving the

governing equations, can be found in Appendix A.

First-Order Accurate Boundary Point FDS Approximations

When calculating values at the upper boundary, of

plane i+l, there is no Riemann location above the boundary to

use, as can be seen in Figure 12. Therefore, only physical

information at Riemann location j-1/2 can be used. Thus, the

split flux differences coming from j+1/2 do not exist and are

deleted from Eq (59) for the upper boundary. For the upper

boundary, Eq (59) becomes:
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+ = - AC 1x (dE+)j- 11 2 - AC rly (dF )j 1 / 2  (60)

For the lower boundary:

+1 : - A- j (dE-+ 1 / 2 - AC Tly (d -)j ,/ 2  (61)

After the partial solution at plane i+l has been computed

using Eqs (60) and (61), the conservative variables are

decoded into the primitive variables p, u, v, p, and pe. The

resultant decoded solution does not necessarily obey the

inviscid velocity tangency condition at the wall. Therefore,

to be physically consistent with the geometry, the primitive

variables need to be corrected, and a wave corrector is

applied to the solution to turn the flow parallel to the wall.

To accomplish this turning, a new deflection angle, 6, is

specified as:

8 = esol - wall

where

0.01 is the computed flow angle (62)

6 wall is the wall angle

After the deflection angle is known, the flow can be turned

parallel to the wall by one of two methods. If a compression
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wave is required to turn the flow, the oblique shock wave

relationships are used. A shock wave angle, F, can be

iterated using Eq (12), and the corrected pressure, density,

and velocity components are computed. If and expansion is

required to turn the flow, the Prandtl-Meyer expansion wave

relationships are used. Equation (23) would be iterated to

determine the downstream Mach number. Once the Mach number is

known, the primitive variables can be computed.
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Figure 12. Stencil for first-order accurate upper solid
wall boundary point (3:196).
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V. Second-Order Accurate Center-Spaced Flux-Difference-

Split Numerical Algorithm

Introduction

The first-order accurate method is the basis upon which

the second-order accurate center-spaced method is built.

Recall that the solution is advanced with first-order accuracy

using Eq (59):

i+1 S' ac - AC [dff;-1, 2 + dfi+1/il 59
- A C Tl [dr;1 1 2 + dF+11/2] (9

Equation (59) can be rewritten as

1+1 1ZjJ + Aj (z) 1 , + Aj () 1 , (63)

where

Aj (8) J' - AC T1 [(d3 )j- 1/ 2 + (d -)j+1 / 2] (64)

A (F) 1 - Afl [(dF+)j1/1 2 + (dFii+11/] (65)

In the above equations, the ixy subscript indicates that these

quantities are first-order accurate corrections in the x and
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y directions, and are functions of the sums of the flux

differences.

Second-Order Accurate Center-Spaced Interior Point

FDS Approximations

Second-order accuracy can be implemented by two different

methods. First, and most obvious, is to use a second-order

accurate differencing method for the derivative approximations

in the governing equations. The second method, which is used

here, uses a first-order accurate solution and adds a second-

order corrector to it. Thus, the second-order accurate

solution is comprised of the first-order accurate solution and

second-order corrections.

Doty has shown that a second-order correction applied to

the linear hyperbolic convection equation, which is often used

to model the essential characteristics of the nonlinear system

of equations, has a modified equation that demonstrates

second-order accuracy (3:108). For a complete description of

this process, refer to Appendices A, B, and L in reference 3.

The second-order accurate equation can be written in

shorthand notation as:

=r jr A, (E) 1,1Y 2 + A H)2 +'j() 21 66

+ 1(F) I + &j(FP) 2y + Aj(P) 2.
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The second-order normal corrections are:

2y (67)

C m1 (dyi,-1 12 - (dff -1 1

and

AjF1/2 - 1 A)-12

2 -&C Im, [(d74 )j+1/2 - (dF) 1 1]

The second-order axial corrections are:

A, OF) 2. _I &~C2 11. [((A dEf)j-1 /2 - (A dE+)j-1 /2)1

" ((A "*)j- 1 2 - (A dgu1/ 2 )2

" ((A dr') j'1/2 - (A CIZ')j 112 )] (69)

_ C 1 l ((A dffl,, 1 /2 -(JAI dg-l1 - 1 /2 )1

+ ((JAI dffl,, 1 /2 -(JAI dS-i 1 /2 )2

+ ((JAI drl1,1,, 2 - (JAI djrl11 112)3]

and
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Aj(F) 2, il A dF) 112 - (A dF

2
" ((A dF) , 112 - (A dF.)j-1 /2)2

" ((A dF 1~.12  - (A dF+)J 1 2)3] (70)

4&1 1 [( dp-ij-1 / 2 - (JAI dF1)j1 1 2 )1

+ ((JAI dF-)j1. 2  -(I dF-)j-/ 2 )2

+ ((IAI dp,-)j+-1 2 -(IAI d-)j- 2 )3]

Note that the second-order corrections are differences of the

split flux differences, and both the axial and normal

correction are required to achieve overall second-order

accuracy. As can be seen in Figure 13, the second-order

corrections do not pass information in the same manner as the

first-order correction. The second-order method passes

positive information from node j+1/2, and negative information

from node j-1/2. This violates the rules that only positive

biased information is used from the Riemann location below

node j, and only negative biased information is used from the

Riemann location above node j. This is not a problem due to

the small magnitude, and influence, of second-order correction

terms, Pandolfi (7:606).
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Second-Order Accurate Center-Spaced Boundary Point

FDS Approximations

The second-order boundary correction terms are computed

in a manner similar to the first-order boundary solution. The

difference is that information is required at a fictitious

Riemann location just outside the boundary, at j+1/2, for the

upper boundary in Figure 13. This fictitious location is

assigned information so that a difference of a split flux

difference can be computed for the Riemann location just

inside the boundary, at j-1/2. As an example on the upper

boundary, to get a difference of a split flux difference at

j-1/2, the split flux differences at locations j-1/2 and j-3/2

must be extrapolated to j+1/2. According to Pandolfi (7:607),

a linear extrapolation is sufficient:

(dZ ) J11/2 = 2 (de+) j-1/2 - (dE+) j-3/2 (71)

(dF')i1/2 = 2 (dP) ji-1/2 - (dF) j-3/2 (72)

On the lower boundary:

(dE-ji-1/2 = 2 (d -)j.1/2 - (d -)j 3/2 (73)

(dp-)Ji /2 = 2 (dP-)j-1/2 - (dP-)j-3/2 (74)
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As an example on the upper boundary, after the split flux

differences are determined for the fictitious Riemann

location, j+1/2, a difference of a split flux difference can

be computed at j-1/2. The second-order correction is computed

in a procedure similar to that of the first-order solution,

except instead of using split flux differences at j-1/2, the

second-order method uses differences of split flux differences

at j-1/2 to compute the second-order corrections. Once the

second-order correction is known, it is added to the first-

order solution. The same method is repeated on the lower

boundary. See Chapter IV.
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center-spaced FDS method (3:213).
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center-spaced FDS method at upper boundary (3:214).

41



VI. Results and Discussion

Two different investigations were performed to determine

the effects of the second-order correction terms. The first

investigation was a grid refinement study using a supersonic

source flow. The second was a method comparison using an

oblique shock wave study.

Grid Refinement Study

Before the grid refinement study is discussed, a

convention must be defined. In this discussion, methodXX will

be used to describe a differencing scheme used in the

analysis, where the first X corresponds to the differencing

scheme used at an interior location, and the second X would

indicate the method used on the boundaries. The definition is

as follows:

1- corresponds to a first-order upwind differencing

2- corresponds to a second-order central differencing

Or, stated directly:

methodll- 1st order interior, ist order boundary

method2l- 2nd order interior, 1st order boundary

method22- 2nd order interior, 2nd order boundary

These conventions will be used from this point forward.

The grid refinement study was accomplished with a source

flow comparison, using the initial conditions in Table I.
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Table I. Initial conditions for source flow analysis.

Property Mach=1.01

static pressure (Pa) 101,325

static temperature (K) 298.0

specific heat ratio 1.4

gas constant (J/Kg/K) 287.0

An example of the source flow geometry, illustrated in

Figure 15, consists of an upper and lower wall, each diverging

at 15 degrees. The initial plane is at an axial distance of

one meter, and the final plane is at four meters. The walls

diverged at 15 degrees from the centerline. For an

explanation of the exact solution of the source flow, see

Appendix 0 in reference 3.

The normalized static pressure error was computed at each

nodal location as follows:

normalized static pressure error = Pnumerical-Pexact (75)
Pexact

Interior Point Error Convergence. The interior point

error convergence was accomplished by analyzing the flow along

a single grid point location that corresponded to the

centerline of the source flow for methodil, method2l, and

method22. For each method, a configuration of 11 nodes, 21
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nodes, and 31 nodes at each computational plane was studied.

The absolute value of the normalized static pressure error was

integrated using trapezoidal integration. The results can be

seen in Table II.

k "le II. Integrated percent error in static pressure along

centerline.

methodll method2l method22

11 nodes 0.847 0.401 0.531

21 nodes 0.394 0.171 0.247

31 nodes 0.234 0.117 0.168

For methodll, see Figure 16, increasing the number of

nodes from 11 to 21 results iii a 53 percent reduction in

integrated error. This is consistent with a first-order,

finite-difference method.

Figure 17 shows the error convergence for method 21.

Again, increasing the number of nodes from 11 to 21 results in

a 57 percent reduction in error. While a 57 percent error

reduction is slightly better than a first-order, finite-

difference convergence, it falls short of the 75 percent

reduction that would be achieved for a second-order, finite-

differenced equation.

The error convergence for method22 can be seen in

Figure 18. Increasing the number of nodes from 11 to 21

results in an integrated erroL reduction of 53 percent.

Interestingly, this is the same reduction seen in methodll,
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and is very close to method22's value. Again, the error

reduction falls short of the 75 percent value that would be

achieved by a second-order finite differenced equation.

As stated before, the FDS method is similar to finite-

differencing up to the point where the flux differences are

split. After the flux differences are split, only a portion

of the information from a particular Riemann location might be

used to compute new values at the next computational plane.

A finite-differencing scheme would use all the information,

depending on the stencil, in determining the values at the

next plane. Because of this splitting, and using different

amounts of information from the same location, FDS does not

directly relate to finite-differencing.

Boundary Point Error ConverQence. The boundary point

error convergence was done by looking at the flow along the

upper wall of the source flow for methodil, method2l, and

method22. For each method, a configuration of 11 nodes, 21

nodes, and 31 nodes at each computational plane was studied.

The results can be seen in Table III.

Table III. Integrated percent error in static pressure along

upper boundary.

methodil method2l method22

11 nodes 3.554 1.658 0.629

21 nodes 1.587 0.771 0.410

31 nodes 1.008 0.482 0.348
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For methodli, see Figure 19, increasing the number of

nodes from 11 to 21 results in a 55 percent reduction in

error.

Figure 20 shows the error convergence for method2l.

Again, increasing the number of nodes from 11 to 21 results in

a 53 percent reduction in error. This is approximately the

same error convergence as methodll above.

The error convergence for method22 can be seen in

Figure 21. Increasing the number of nodes from 11 to 21

results in an integrated error reduction of only 35 percent.

Method22 on the boundary is the only method that shows the

true error convergence for the second-order boundary since the

boundary effects for method22 at the centerline are

diminished. This lesser reduction of error at the boundary

could be the result of extrapolating a split flux difference

to a location outside the boundary, and weighing it evenly

with split flux difference information coming from a Riemann

location just inside the boundary. In effect, nonphysical

information is being used equally with physical information

near the boundary.

In summary of both interior and boundary integrated error

comparison, all three methods appear to have a near first-

order finite-difference convergence behavior. The expected

75 percent error reduction for a second-order method was not

demonstrated for the FDS method. This is caused by the
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splitting of the fluxes, and using the information differently

than a finite-differencing method would use it. As a result

of the grid refinement study, second-order accuracy for the

FDS method cannot be verified.

Method Comparison

To further compare the three methods, flow traveling

through an oblique shock wave was studied. The oblique shock

study is a more demanding and significant test than the source

flow study. For the shock study, a uniform flow of Mach

number 2.2 enters a channel, region 1, with initially parallel

walls, see Figure 22. As the flow proceeds downstream, it

encounters a ramp at the bottom wall with a deflection angle

of 10 degrees. This ramp creates an incident oblique shock

wave that turns the flow parallel to the ramp, forming a

second area of uniform flow, which is represented by region 2

in the figure. Finally, the flow is turned back parallel to

the wall by an oblique shock reflection. This results in

uniform flow in region 3. All three methods were analyzed

using 51 nodes on each computational plane. Table IV gives

the exact conditions for the three regions:
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Table IV. Exact values in oblique shock study.

Property Region 1 Region 2 Region 3

static 206,842.0 344,829.8 548,689.3
pressure
(Pa)

static 1500.0 1666.8 1833.4
temperature
(K)

Mach number 2.2 1.885555 1.582704

specific 1.25 1.25 1.25
heat ratio

gas constant 332.56 332.56 332.56
(J/Kg/K) I

Interior Point Method Comparison. A graph showing plots

of all three methods computed across an oblique shock wave,

along the streamwise grid location of j=41, can be seen in

Figure 23. At first glance, it appears that all three methods

predicted identical pressures for a given value of x. What

this means is that if the pressures were calculated at every

value of x, the values computed for all three methods would

appear on the same curve. But, in a numerical scheme, values

are only computed at discrete locations, which is determined

by the step size. Both second-order interior methods compute

the exact same value with identical step sizes, but the first-

order interior method computes a different step size.

The reason that all three methods lie very near the same

curve is because the magnitude of the second-order correction

term is very small as compared to the first-order solution

that it is added to. To explain why the second-order
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correction is small compared to the first-order solution, a

discussion of the ideal Riemann problem for the oblique shock

wave is in order. For an idealized Riemann problem, on each

computational plane the shock wave is captured by two nodes

and only passes through one Riemann location that is between

the nodes. See Figure 24. In this case, the Riemann location

above j, at j+1/2, contains nonzero values because it

separates two different uniform flow regions, at j and j+1.

Eq (38) can be used to demonstrate this:

(38)
( dE)j1/2 = [ (dEl) wave3 + (dEl) wave2 + (dEl) 1ve 1]j1/2

As can be seen in Eq (38), which represents the total

difference between nodes j and j+l, the flux differences, at

j+1/2, would contain nonzero values. A similar argument can

be made about the Riemann location that would be below j, at

j-1/2. Because the uniform flowfields at j and j-1 are equal,

there is no flux difference at j-1/2. Thus, the Riemann

location at j-1/2, is in uniform flow and contains only zero

values. The second-order correction computes the difference

between the positive biased split flux differences above and

below the node, and the differences between the negative

biased split flux differences above and below. The

differences of the positive and negative split flux
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differences from above and below would give values equal in

magnitude to those at j+1/2 since the values of the split flux

differences below are equal to zero. These differences of

split flux differences are multiplied by a coefficient for the

second-order corrections and are then added to the first-order

solutions. In the idealized case, values on the order of the

coefficients would be added. In the case where the shock is

smeared over four or five nodes, the values at the Riemann

locations are also smeared. This means that the values in two

adjacent Riemann locations are very near one another. As a

result, the differences of the positive and negative split

flux differences above and below the node are very small, and

when multiplied by the coefficients, they become much smaller

in comparison with the first-order solution. Since the

second-order corrections that are added to the first-order

solution is much smaller than the first-order solution, all

three methods appear to predict values along the same curve.

Boundary Point Method Comparison. A graph showing plots

of all three methods computed on the upper wall across a shock

reflection can be seen in Figure 25. Methodil and method2l

show a monotonic convergence behavior across the shock. This

is the expected result since both methods are first-order

accurate on the boundary. As noted above in the interior

point method comparison, these two methods appear to predict

values that fall almost on the same curve with the only
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difference being step size. For method22, the solution moves

in the wrong direction just before the shock, and slightly

overshoots the exact solution after the shock. The initial

drop in the value before the shock is caused by the linear

extrapolation of the values that are located at j-1/2 and

j-3/2. Recall that this linear extrapolation was needed to

get values for split flux differences at a fictitious Riemann

location just outside the boundary. Information was needed

there to compute the differences of split flux differences for

the second-order corrections. The problem arises because the

Riemann location at j-3/2 may be in region 2, behind the shock

wave, but j-1/2 may still be influenced by region 1, as

illustrated in Figure 26. This results in erroneous

information being extrapolated to the fictitious Riemann

location. The same problem arises when the computational

plane is just behind the shock reflection. Riemann location

j-1/2 is influenced by region 3, but location j-3/2 is still

in region 2. As a result, the second-order boundary

correction looses accuracy around a shock reflection.
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Figure 15. Geometry for planar supersonic source flow (3:237).
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Figure 22. Geometry for shock wave reflection study (3:44).
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Figure 24. Riemann problem for a shock wave (3:180).
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Figure 26. Linear extrapolation across a shock at a boundary 13:44).
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VII. Summary

Second-order correction terms were added to an existing

computer program that is based on a first-order accurate flux-

difference-splitting method. Individual analyses were

performed in an effort to verify the second-order accuracy of

the solution and to determine the benefits associated with the

second-order method.

A grid refinement study was performed in an attempt to

verify a second-order accuracy in the solution obtained by

adding the second-order correction terms to the first-order

solution. Second-order accuracy could not be confirmed.

Additionally, it was noted for all three methods evaluated

that doubling the number of nodes resulted in an error

reduction of approximately 50 percent. The only exception to

this 50 percent reduction was seen in the method22 analysis at

the boundary, which had a reduction of only 35 percent. This

boundary behavior for method22 resulted from extrapolating

information from two interior Riemann locations that were in

different flow regions to a fictitious Riemann location

outside the boundary, and then weighing the fictitious

information equally with real information from the location

just inside the boundary.

During the oblique shock reflection study it was observed

that, as a result of shock smearing, the second-order

correction for the interior points was very small in magnitude
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with respect to the first-order solution. Consequently, all

three methods predicted values that appeared to lie on the

same curve. The only deviation was that the step size for the

second-order methods is different than that of the first-order

method. The shock reflection study on the boundary

demonstrated that methodll and method2l predicted similar

values. This was expected since the two methods are first-

order accurate on the boundary. Again, the only deviation was

in the step size and the axial location of the computational

planes. Method22 performed poorly on the boundary. The

reason for the poor performance for method22 was because it

uses information extrapolated from the first two interior

Riemann locations to assign information to a fictitious

Riemann location outside the boundary. The problem lies in

the fact that the method extrapolates across the oblique shock

wave, resulting in erroneous values at the nonphysical Riemann

location. This anomaly occurs both in front of the shock

reflection and behind it.

As a result of the above observations and conclusions,

and with the knowledge that the first-order method has a

faster computation time and is as accurate as many second-

order finite differencing schemes, Taylor (8:108), the

recommendation is to perform future analysis using the first-

order method.
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Appendix A: Weak Conservation Law Form
of the Governinq Equations

The weak conservation form uses metrics at the Riemann

locations and is, therefore, consistent with the FDS. This

translation of the metrics is a logical step because the split

flux differences, which pass information to plane i+l, are

computed at the Riemann locations. Converting the governing

equations into weak conservation form is done by moving the

metrics in the governing equations, Eq (10), into the

derivative, and differencing the flux/metric product,

Hindman (6:113). A mathematical manipulation is require to

move the metrics into the differentiation that occurs in

Eq (10), which is repeated here for convenience:

a(s) = _ 1a(z) a(F) (10)

Using the product rule of partial differentiation, it can be

demonstrated that the metrics can be moved dire-.ly into the

differentials on the right-hand side of Eq (10) as follows:

a a(s) a- .( + _ ) (1 -) if (76)

Manipulating the last term in Eq (76) shows
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• ( bc) E E = iix E= = 0 (77)

Substituting Eq (77) into Eq (76) and reversing the terms

,I,, a =( a=.0 i) (78)

Equation (78) corresponds to the first term on the right-hand

side of Eq (10). A similar manipulation can be performed on

the last term in Eq (10). Therefore, it has been demonstrated

that the metrics can be moved into the differentials while

retaining the integrity of the governing equations. Thus,

through a similar derivation of Eq (59), Eq (10) can be

transformed into the first-order flux-difference-splitting,

weak conservation law form:

Sz z- A [(n d)j-12 + (n' d-). 1 1 2 ] (79)
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